
-ADA81 088 CARNSIBE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER --ETC F/6 /8
THE ZOO APPROACH TO MAN-MACHINE COMMUN CATJON.(U)
OCT 79 B ROBERTSON. 0 MCCRACKEN, A NEWELL N00014-76-C-0874

UNCLASSFFIFO CMU-CS-79-148 ML

EEEohEEEIIEIIEEEEEEEEEEEEEEEl
EEEEEEEEEEE-EJ
EI//I/I/I,,

.4 ~~ii A"~ **~

irI

to OleMb~U~r~

r,!
7 jJ l7 CS79-18

1 The ZOG Approach to Man-Mhchine Commun;c=,ion.

G. Robertson, Df McCracken4 .ANw:

Departmont of Cmnputer Science

Carnegie-Mellon University

,.5•o ct.,, 79

This work was supported by the Office of ival Research under contract N00014-76-0874.
It was also partial[,/ supported by the D.-ense Advanced Research Projects Agency (DOD),
ARPA Order.Np. 3597, monitored by the Air Force Avionics Laboratory under contract

S15-78-C- 15151.

/N: ~ ?L 4,

Table of Contents

Introduc!ion j
2. Basic Ideas in ZOG 3

2.1. Rapid Response '6
2.2. Simple Selection 6
2.3. Large Network 6
2.4. Frame Simplicity 7
2.5. Transparency 8
2.6. Communication Agent 8
2.7. Active Response 10
2.8. Subnet Facilities 10
2.9. Modifiability I I
2.10. External Definition 11
2.11. Uniform Scarch 12

3. System Architecture 13
3.1. Ba ,ic System Design 14

3.1.1. Frames and SL'lneis 17
3.1.2. External Frame Format 19
3.1.3. Selection Proccss;ng 20
3.1.4. Communications Languave 21

3.1.5. Statistics Gathering 23
3.1.6. Frame Editing -- ZED 24
3.1.7. Conventions 25

3.2. Current implement ition 27
3.2.1. ZOG on the POPIO 27
3.2.2. ZOG on VAX-i 1/780 28
3.2.3. ZOG on C.mmp 28

4. Initial Experience with ZOG 30
4.1. Computing Communities 30
4.2. Speed of Interaction 31
4.3. Large Nets 32
4.4. Applications 32
4.5. Major Psychological Issues 34

5. The Potential of ZOG 35
6. Cost 39
7. Next Steps 40
8. Acknowledgements 41
9. References 41
I. ZOG Communications Language 44

.I. ZOGNET Positioning Commands ' 44
1.2. Communication, Control Commands ' 45
1.3. ZOGNET Modification Commands ,.- , .46
1.4. Hard Copy Output Commands 47

II. ZED - The Frame Editor .. 49
1.. External Frame Format if

/ Djst a,/t

,,, ,/ SpoocJ ,

IL,-" . I"_ (PSol2

I ''.ll.

The ZOG Appro-ch to Man-Machine ComrnuniCa-ion

G. Robertson, 0. McCracken and A. Newell

Carnegie-Motion University. Pittsburgh, Pa. 15213, U.S.A.

"--ZOG is a rapid response, large network, menu selection system used for

man-machine communication. The philosophy behind this style of communication

was first developerl by the PROCMIS (Prcblcm Orie'oted Med;cat Jnforrn,ion System)

Laborasory of the University of Vermont. ZOG h .s bcen used in a number cf task

domains to help explore the limits and potential benefits of the communication

philosophy. This paper discusses the basic ideas in ZOG, dcscribes the architecturs

of a system implemented to carry out that exploration, and discusses our initial

experience.

1. Introduction

We have hardly begun to understand how to communicate effectively with computers. In

part, the problem is one of evolution. As the computer continues to evolve into more

powerful forms, the resident systems become more extensive and intelligent, requiring and

supporting more sophisticated dialogs. Nevertheless, relatively few studies have explored the

man-computer interface. There certainly is no well developed theoretical framework for

evaluating and improving interfaces. In part, the problem is one of invention. We have been

so bound by technology (removing obvious annoyances of existing interfaces and getting the

bandwidth up, all within bounds of economy), that we have not addressed substantive issues

of man-machine communication.

What would be an ideal communication medium between people and michines? No one

knows. We have a tendency to reach in two directions for the answer. One is reaction to

present interfaces. Yesterday it was 1200 baud terminals with a modicum of "intelligence"

(meaning local computing power). Today it is personal computing with integrated graphics

capabilities. The other direction is communication with our fellow man. We wish to speak and

2 G. Robertson, D. McCracken and A. Newell

listen, using natural language, and also to paint and sketch. These skills of expression seem

ideal because of their long natural development.

If we can draw any lesson from the development of computers it is that we should seize on

any notion that seems to expand the frontiers of the possible. Most such efforts will be

stillborn, not liberating or not technologically feasible. Even then, if done with some scientific

curiosity and attention, they can leave a residue that will help later on. Occasionally,

however, such probes can set the stage for new developments.

We report here one such probe, a particular interface for man-computer interaction that

has some novel properties. The basic idea is not ours. It was originated by the PROMIS

group at the University of Vermont Medical School, who designed and implemented a complete

system incorporating the basic scheme, and brought it to practical use. See Schultz and Davis

(1979) for a discussion of PROMIS. We call our version of the scheme ZOG (which stands for

nothing, bt is short, easily pronounced and easily remembered).

The, scheme itself is easily stated. Communication is via menu selection, where the menu is

displayed on a video terminal with a touch screen. The user touches the option of his choice

and is instantly shown a new display, called a frame, with further options relating to the

chosen topic. When the user makes a selection, some system action may be performed in

addition to displaying a new frame. The network of such frames is large enough so that all

communication is by this means; in practice the nets are very large indeed. Thus,

communication from man to computer is by discrete selection of semantically meaningful

options. Communication from computer to man is by visual display of natural language text in

a structured format.

In PROMIS, the interface is embedded within a larger system, called the Problem Oriented

Medical Information System, which is the main concern of the PROMIS group. Though they

have had a system running for almost seven years, its impact on the development of

man-machine interfaces generally has been small. Nevertheless, we know of no of other

system with the same essential features. The recent, extremely, interesting, development of

the British Post Office Viewdata system, described by Ford (1979), does share some

characteristics, but is tied to the mass television market and its limitations. We were

i7

The ZOG Aprroach 3

sensitized to ithe PROMIS Lab work from an attumpt of our own in 1972 to produce a siri:ar

system, described in Newell, Simon, Hayes, and Gregg (1972). Since menu selection is a

common technique in min-machine communication (see Robertson (1978), Martin (1973), and

Newman and Sproull (1979)), the potential of PROMIS is not easily appreciated. We decided to

attempt to extract the scheme from its habitat in the PROMIS application and to study and

exploit it as a general communication interface. Our coal is to find out whether this interface

does ind .d have the potcntial it appears to have, to demonstrate it, and to study its

parameters in order to understand and optimize it.

This pipar is a report on our progress toVard t[,is objecti,,c (sae Robertson, Newell and

Ramakri'khra (977) for an early description of this effort). The main sections of the paper

introduce the basic ideas in ZOG and describe the system architecture. In subsequent

sections we cover some application areas we have explored, some initial issues that have

emerged, the potential of the ZOG philosophy, its cost, and some thoughts about next steps.

2. Basic Ideas in ZOG

We will first describe the ZOG system and how it operates. The user faces a terminal which is

displaying a frame. Figure 1 shows a typical ZOG frame. There is text at the top, a list of

options below the text, a column of pads at the right side, an area called a workspace below

the options, and a horizontal line of pads at the ver/ bottom. The user, at his discretion,

selects one of the options or pads. Suppose he selects option 3.' Immediately, the frame on

the display is replaced by a new one with all the sarne parts: text, options, vertical column of

pads, horizontal line of pads and workspace. Most of the content will be new except for the

horizontal pads, which provide a continuously availabie set of -earch and help functions. For

example, selecting the "back" pad (b) will cause a redisphly of tho frame of Figure 1. Selecting

some pads or options will initiate various actions. If the user had se!ected the PRINT pad, the

textual information on this display would have been output on the printer.

That is all there is to ZOG as far as external mechanics are concerned. The user traverses

a sequence of frames of his own selection, acquiring the information therein and taking the

actions offered to him. It stands, at this level, simply as a menu selection scheme, distinguished

4 G. Robertson, V. McCracken and A. Newell

General background on ZOG Zoc3

ZOG is part of a rserch elfort to understand communication between humans
and computers. Various aspects of this research effort are described below.

1. Systel1 specificalions of ZOG

2. Uhat is ZQG used for -- functional characterization

3. Scientific issues behind 20G

4. Uho is doing ZOG? Where? Whon? What sponsors?

S. Prior research and antecedents

6. Examples of ZOG projects (real and in progress)

7. Developing your own ZOG net P-PRHNT

edit help back next mark return zog display user comment goto find info

Figure 1: Typical ZOG Frame

only bv its ability to take actions in addition to oresentine, knowledee (a orooertv shared by

manv other menu selection schemes).

A preliminary notion of how ZOG can be used is also needed at this point. Like any general

purpose interactive programming language, it can serve in any communication capacity: for

example, as a command language, data base retrieval system, CAI system, guidance system,

interrogation system, or question-answering system. Also, like any programming language,

what it is good for, as opposed to what it can conceivably be used for, is not determined by

gross structure, but by more subtle features of operation, However, it is important to

understand that ZOG is used not only for initial guidance or with novice users, but also for

skilled operation; and not only for exploring knowledge bases, but also for taking action.

In PROMIS, such a system is used as the sole interface in accomplishing the total set of

hospital functions on a ward: keeping patient medical records,+t$king patient histories directly

from patients, prescribing drugs and treatments, monitoring patient progress, checking

treatments for side reactions, and retrieving medical knowledge. It is used by physicians,

patients, nurses, paramedics, and administrative people. It performs a full range of

The ZO.; epproich

communicaticn functions v.i' u!,ers who rpnve wicdcly in soo;is'it;.tion and :. direct skill with

the system. The communication interface is only a part of the total system that accomplishes

all these functions, but it is a central one.

We can now enumerate the additional basic features of ZOG and fill in the missing design

specifications. Some features are more central to the design than others, and the amount of

evidence for each feature's role varies. But together they define the ZOG system. We list

them in Figure 2 and discjss each of them below.

1. l .pid respon:e. Upon selection thie new frame apmears instantly.

2. Simple selection. The user's act of making a selection is a simple unitary

g0- ture.

3. Large network. The netuork of frames is large enough to accommodate all

comimunlcat Ion and knowledgo-exchange with the user.

4. Frame simplicity. The frame display is simple enough to be easily and quickly

a.simil fated.

5. Transparency. The entire system Is completely open and understandable to the

user.

6. Communication agent. The system is usable with existing programming systems to

provide gulance In how to use tlhs programs and how to interpret their results.

7. Active response. The selections can evoke actions that accomplish tasks other

than just movement In the network.

8. Subnet facilities. There exists a hierarchical data organization for networks.

9. lodifiability. The tiser can modify and augment the network.

10. External definition. An external data format exists that completely defines a

ZOG frame library.

11. Uniform search. A uniform scheme exists for searching, traversing and orienting

In the network.

Figure 2: Basic Features of ZOG

6 G. Robortson, D. McCracken and A. Newell

2.1. Rapid Response

Upon selection the new frame appears instantly. "Instantly" is defined with respect to the

user: fast enough so the user feels the flow of frames to be limited only by his own volition.

If traversing a highly familiar network (as in specifying some operand to be worked on), he

can move through the frames almost as a single skilled gesture. If he wishes to take a quick

glimpse of a next unknown frame, he feels no hesitation because he need only wait for two

responses (one clown, one back).

H-ow fast "instantly" must be in seconds is not fully known. PROMIS operates with 0.25

seconds response 707Z of the time. The ideal speed is not likely to be much slowor than this.

One version of ZOG operates with 0.10 seconds response in order to permit exploration of

this parameter.

2.2. Simple Selection

The users act of making a selection is a simple unitary gesture. The time it takes the user

to make a selection acts in series with the response of the system; it must be equally rapid.

Its speed has two aspects: learning what the response should be (since new selections are

always occur.-Ing), and executing the response.. PROMIS uses a touch screen which solves

both these problems: the user simply touches the display at the area-where the option is

stated. ZOG also uses a touch screen, and in addition uses single character selection from a

keyboard.

2.3. Large Network

The network of frames (callcd a ZOGNet) is large enough to accommodate all communication

and knowledge exchange with the user. "Large enough" is again defined with respect to the

user. It means that at every frame there are options to be taken that deal with whatever

Information, help, elaboration and explanation is required. The options lead to other frames

which also provide whatever is necessary. The user finds himself in a world where all of his

The ZOG Approach 7

questions and all of the data lie requires have already been laid out in advance in the network

of frames -- where his needs have been anticipated. (An important exception to this will be

taken up in Section 2.6 on ZOG as a communication agent.)

How many frames constitutes "large enough" is not known. The total system of frames is a

finite state system. Considering the combinatorial nature of life, the conclusion could be that

finite networks are incapable of satisfying this requirement for any interesting task. (Recall

Chomsky's (1957) early stated view that no finite state grammar can adequately portray a

naturil language.) Without doubt this design feature cads to lare networks. The PROMIS

network appeared to satisfy this requirement with aboul 30,000 frames; it may ventually

grow to 100,000 frames. None of our nets approach this yet. As with the criteria for rapid

response, perfection is not neces;ary; the user need not remain within the frame system 100.

of the time. In PROMIS the user types in a response rather than selecting an option

(indicating the absence of an appropriate precoded response) less than 17. of the time. Not

much is known about the details of this criterion or good measurements of it. What is known is

that PROMIS has produced one system that clearly is adequate, in a general enough

environment to engender some optimism.

2.4. Frame Simplicity

The frame display is simple enough to be easily and quickly assimilated. The power of the

technique comes from the fractionation of the total task into smali communication pieces with

control by the user of which of these he wishes to acquire. If each frame were, say, like a

textbook page, then substantial assimilation would be required, and the user would be thrown

back on his own scanning and organizing resources without any help from ZOG. The natural

criterion is that the user should never have to acquire know!edge other than what constitutes

his final solution or what is necessary to find this solution (by the nature of the task, not of

ZOG).

What is "simple enough" is relative to the user. Even less is known about it or how to

measure it than about rapid system response or large networks. Perhaps it can be measured

structurally by amounts of text and options; perhaps by the average residency time per

B G. Robertson, D. McCrackon and A. Nowell

frame; perhaps it requires knowing exactly what knowledge was absorbed. PROMIS frame

design, which has evolved over several years, tends toward a few sentences of text and no

more than half a dozen options.

This design constraint is common to all menu selection systems and does not seem unique to

ZOG. It is useful to stress it, however, because it implies even larger networks than would

otherwise be the case, Faced with the large network problem, a natural engineering

inclination is to permit the knowledge per frame to increase. This simplicity principle inhibits

that inclination.

2.5. Transparency

The entire system is completely open and understandable to the user. It should seem

totally open to him exactly why the system is doing what it is doing, and what it takes to

obtain more information from it or to get it to do something. It should appear completely

controllable and non-mysterious. The effect is stated in terms of user's perceptions, since

what counts is the way the user reacts to it. The ideal user's model should be that of the

"perfect instrument".

The specifications already laid down approach meeting the requirement of transparency:

menu selection, rapid response, large network and simple frames. This creates a structure

that is simple in concept and completely under the user's control. However, within these

constraints it would be easy to realize obscure networks. Thus, the burden of this
specification falls on the details of network and frame-content design. ZOG, like any

programming system, creates an architecture within which one writes programs. The programs

for ZOG are networks of filled-in frames. Thus this requirement canbe taken as a requirement

on programming style.

2.6. Communication Agent

The system can be used with existing programming systems to provide guidance in how to

use the programs and how to interpret their results. This is not a requirement that derives

The ZOG Aprroch 9

from PONOIS, but from our earlier altenlpt to build a similar syr!er. PROMIS is an active

system in that lhe selections can execute programs, but it is a closed system implemented on

dedicated hardware. If all programs for ZOG must be coded specially for it, an entire world of

applications is excluded. It then becomes a particular form of interactive programming

language, though with many special features. But if it can somehow be integrated with any

existing programming system, then it becomes a much more flexible tool.

This requircment is realized by makin, ZOG a communication agent. That is, ZOG sits

astride the communication plh between the user and an arb!rary program, called t-e subjob.

Thus ZOG can monitor, interpret aid modify the input ard output streams in both directiorns.

There is a communication language associated with ZOG itself, but it does not operate as a

regular programming language. Rather, it translates the user's selections into messages to

send to the subjob. It also monitors the subjob's output to the user and can translate these

into new mes.sagcs to the user or into sclections, which cause new displays to be shown to

the user.

This language will be described in the section on the architecture; it is simple in concept

and implementation. The essential point here is that ZOG can operate as a front-end for any

program whatsoever. It can provide explanation, instruction and guidance in working with a

system. Likewise it can interpret the output for the user and suggest what to do. To do any

of these things, of course, requires a ZOG program (i.e., a network) specifically designed to

know about the subjob. How good a job it does depends on the size and sophistication of the

network.

An alternative way of describing this structure is that ZOG is a command language. It is

through ZOG that the user makes contact with all the resources of a computer, executes

programs, and does his housekeeping (e.g., file management and message handling). Its

usefulness as a command language, of course, arises not from any special logica character,

but in its potential for explaining and guiding.

The use of ZOG as a communication agent necessarily carries with it the potential to violate

transparency. ZOG clearly need not know all about the programs for which it fronts. In

general, it cannot do so (e.g., if permitting access to another programming language such as

10 G. Robertson, D. McCracken and A. Newell

ALGOL68 or LISP). Thus, the user will generally see a mixed system in which he will be aware

when the subjrb is running and he is no lon,er dealing with ZOG.

The ability to have a system that can interpose between the user and any other job

running on the host computer requires certain capabilities in the resident operating system

within which the communication agent and the other job run. Such capabilities exist in the

operating systems for the computers on which ZOG currently runs, but they are not

necessarily availble in all operating systems.

2.7. Active Response

The selections in ZOG can execute programs and take actions other than just search and

retrieval from the network. Thus ZOG is an active system rather than just a data retrieval

system, though the latter aspect is implicit in the large network. This capability could be

realized directly in a programming language designed within ZOG; instead it is realized by ZOG

being a communication agent, as described above.

2.8. Subnet Facilities

ZOG incorporates a hierarchical data organization for networks, called the subnet, which

operates essentially like a subroutine. Subnets have names and can be handled as units. The

user can orient himself by subnets, always getting back to the top of a subnet. There can be

subnets within subnets recursively.

Given modern practict, in data structures, there is nothing striking about this requirement.

Nevertheless, it is important for the creation and modification of networks, and for the

efficient implementation of large networks. Its importance for the user's operation in the net

is less clear and there are no strong grounds for insisting on it (rather than simply having the

user see the network as one large integral structure).

Tha ZOG Approach ii

2.9. Modifiability

The user can modify and augment the network to suit himself. The goal of transparency by

itself probably requires that a user be able to make small changes easily to any existing

network, representing his own understanding and preferred way of dealing with the material

of the net. There are some closely related additional reasons, such as increasing efficiency.

But, as witlh the communication agent requirement, additional worlds of application become

possible if networks are easily constrLcted and modified. Users can extend explanations, not

just to clarify what is there, but in iin application centered aro,.nd the growth of the ZOGNet.

Full retrieval systems, involvirg both au-mentation and access, become possible, as cpposed

simply to searches of fixed data bases.

The requirement for easy modification and augmentation implies that an editor for frames

and nets become an integral part of the system. There would be a requirement for an editor

in any event, but if it were viewed as just for some class of professional "net builders", its

facilities and its integration into ZOG could be seen as much less crucial. In the current

scheme, the ZOG editor (called ZED.) c.n be evoked as a selection from any frame.

2.10. External Definition

ZOGNets can be completely defined in an external data format. Because frames are display

structures there is a temptation to define them only as internal data structures. In fact this

was true of the initial PROMIS system (but not of the current system), and we expect it is true

of most menu selection systems. However, considerations of ultimate portability require that

some machine independent definition of a ZOGNet exist.

This requirement takes on the status of an imperative as soon as large networks are

contemplated. A network of 50,000 frames represents a great body of knowledge (like a 5000

page text book), and becomes extremely valuable. It is easier to get a new ZOG system up

and running on a new computer than it is to create 50,000 frames. Under these conditions,

portability of the frame library is mandatory.

This requirement interacts with the specifications that ZOG be active and be a

12 G. Robortcon, D. McCra!.kon and A. Newoll

communication agent. If ZOG had associated with it a full programming language, large

amounts of the knowledg;e in a ZOGNet would be encoded in procedures in this language.

Because the operating environment of this programming language is the display, it is much

less perspicuous than most standard higher level languages. Documentation of these

procedures so that the network becomes in fact portable and maintainable is a serious issue

(and this is proving so with the current PROMIS system). The ZOG communication language is

quite limited and simple (e.g., it has no conditional or loop control), so that essentially all of

the knowledge in the net is encoded in the surface structure of frames and their connections.

Thus it turns out that a simple representation involving strings of alphanumeric text is quite

adequate.

The solution to external definition we have adopted is to embed our simple format within a

bibliographic system which is in public use at CMUJ, called BH (Newcomer, 1976). BH provides

the requisite data handling and printing facilities, and is oriented towards relatively large files.

It is described in the section on system architecture. Thus ZOG does have a complete external

definition simple enough to permit exportation.

2.11. Uniform Search

ZOG has a uniform scheme for searching and orienting in the network. Transparency

requires that the user find the system extremely easy to understand and deal with, even

when working in networks new to him (which will often occur in acquiring bodies of new

knowledge). The operational aspects of how the user finds his way in the net are as

important as the simplicity of the frames themselves. The difficulty is that the frame provides

only a small and local view on the world so that the user must move around in the net to

acquire knowledge, leaving all but the current frame out of sight.

Part of the solution to this is a set of tools for orientation and movement within the

network. At any frame, the user may examine the list of frames he has recently visited, the

list of frames which point to the current frame, and a list of frames explicitly marked by the

user. There is also a facility for searching the network for any specified text string.

Another important part of the solution to uniform search is a set of conventions for how

The ZOG Approach 13.

any net is structured, which the user may rely upon and become familiar with. We hava

formulated a set of principles and conventions tht seem reasonable based on the experience

of PROMIS and our own explorations. But there is little data as yet to support our particular

set.

The uniform search requirement is a constraint on network structure, on the content of

frames and their internal arrangement. No features of the architecture proper reflect it. As a

programming system, ZOG is defined and usable independent of this requirement, just as a

comput-r is dlfincd without specifyin, an operating system or an assembler. However, just

as ',viwU wn operating .ystem, ZOG cannot be run wAbout something that provides tools for

searching through the net. Thus, we have included this requirement here, even though it is a

pure ZOG-software requirement.

The solution adopted in ZOG attempts to satisfy the following principles:

1. No sudden death. No selection taken by a user produces a change that is
irreversible. This applies both to movements in the network and to actions taken.

Where this is not possible explicit confirmation will be required.

2. Standardized pads. There is a set of selections with standard names that are

avaitable in all frames. (This is the horizontal line of pads in Figure I consisting

of: edit, help, back, next, mark, return, zog, display, user, comment, goto, find, and

info.)

3. Anchor points. It is always possible to return to known frames that play the role

of anchor points. Anchor points should be dynamically determinable. (This is

realized in part by the pads: back, mark, return and zog.)

We have described the basic ideas that we are exploring. Now, let us examine the

architecture of the system we constructed to explore these ideas.

3. System Architecture

In order to describe the architecture of the ZOG system, we must distinguish what a user sees
from what a frame builder sees. It is important to note that any user may become a frame

I

14 G. Robertson, D. McCracken and A. Newoll

builder; in fact, frame modification and augmentation are the primary means of allowing the

user to tailor the system to his needs.

As described in the introduction, the user sees a display of a frame which contains some

text and a menu of selections. When the user makes a selection, either by touching the

screen or by typing the appropriate character, some action may occur and a new frame may

be displayed. The user works his way through a network of frames organized into

subsystems, called subnets. A subnet's goal is to guide the user to learn something, by

reading the text, or to accomplish some action.

The frame builder sees the same basic system for selection processing, but also sees a

communications language that allows him to construct frames and actions to accomplish

desired tasks in the frames. The communications language that the frame builder uses has

four basic functional capabilities: (1) network positioning to control which frames the user

sees, (2) communications control to control interactions between the user and the various

components of the system, (3) network and frame modification to allow existing frames to be

modified and now frames to be added, and (4) hard-copy output of frames in various formats.

Next, we discuss the design of the mechanisms that support the frame builder's view of

ZOG. Since the user's view is a subset of the frame builder's view, this covers those support

mechanisms also. We will then discuss the current implementations of ZOG.

3.1. Basic System Design

The ZOG system may be viewed as a communications multiplexor. It has a number of logical

input devices, each of which may be linked to an arbitrary subset of logical output devices.

The basic function of ZOG is to cycle through the set of input devices and route messages to

the appropriate output devices. Any one of these input devices may invoke the

communications language, through escape characters, to control the position in the frame

network, control the communications multiplexor, or manipulate frames.

The logical input and output devices are listed in Figure 3. The input devices are on the

left and the output devices are on the right. Since an input can be routed to any set of

outputs, no constraints can be placed on the inputs (i.e., although output devices will make

Tho ZOG AJppc,,ich 15

formattIn; i,..sump!ions, ZOG can mlke no such assumptions). For example, if the input file is

routed to selection processing., then the characters being read from the file are treated just

as selection characters typed from the keyboard. If the input file is routed to ZOGNet

building, then the file being read is assumed to be in the external frame format (discussed in

Section 3.1.2). If the input file is routed to the subjob, then it can be anything at all. It

should also be noted that output devices are not aware of the source of the character

strearn with which they deal. We will briefly describe each of these logical devices before

describin, the rest of tho system.

frm K eyboard 7 User Display 2
USER Ouch-screen 7 Context Displ.y Rto

USER
Actions Frame Display

Input file ." ZO Selection processing

ZOGNET printig Output file

ZOG es~aro'sLog file

from r(Subjob output ZOGNET building
SjbtoSbo .Echo from Subjob / Subjob Input --- Subjob

Figure 3: ZOG as a Communication Agent

Input drevires generate character streams. The aeyboard is read one character at a time.

Each character is sent to ail output devices linked to the keyboard, unless one of the

communications lansuage escape characters is detected. The touch sonsitive screen produces

a pair of coordinates when touched by a finger. These coordinates are translated into

selection characters and then processed as though they had been entered from the keyboard.

The communications language escape characters cannot be generated by the touch screen.

The action input is processed during selection processing when a selection is made nr when a

frame is entered. The action is stored as part of the frame, and its format will be discussed

16 G. Robertson, D. McCracken and A. Newell

below. The in2ut fil (a file as defined and supported by the underlying operating system),

once opened, is processed until the end of file is encountered. The SUbiob is a separate job

being controlled by the ZOG job. The subjob may be used to run any arbitrary - ogram, and

input from the subjob is terminal output from the subjob's point of view. This job is

automatically logged in when the first character is sent to it and logged out when ZOG exits.

Subiob echo is produced when characters are sent to the subjob, if the subjob itself is

echoing characters. Echo input cannot include communications language commands, even if it

contains the appropriate escape characters. ZOGret printinF results from invoking one of the

ZOGNet modification commands in the communications language. The printing is in an external

frame format discussed below. Finally, ZOG me.ssges result from prompts or errors reported

by the ZOG system.

The output devices accept character streams. The selection Processing logical output

device is what the ZOG user sees most often. It takes a character representing a selection

from a menu and does what is appropriate with it (discussed below). Three logical display

windows are supported. The frame dslay is used by selection processing; the user display

has no preassigned use (but would normally be used by a subjob); and the context display is

a small window used to display the number of marked frames. Each window may include

arbitrary areas of the screen. A single output file can be open, and any stream of text

characters may be sent to it. The !9A file is opened if the user requests that a detailed log of

his terminal interactions be maintained. It is also one of the general output devices so that

the user may send other text to it. Output to the subiob appears as terminal input from the

subjob's point of view. Finally, ZOGNet buildinp. constructs new frames or modifies existing

frames from an external frame format.

When the user first starts interacting with ZOG, there is no file or subjob input, and the

keyboard is linked to the selection processor. The initial frame is displayed and the user is

expected to make some selection. The initial frame is ZOGI by default, but the user may

declare any frame to be the initial frame.

The ZOG Appre,-ch 17

3.1.1. Frames and Subnots

Let us examine the content and layout of a frame, and the organization of the system into

collections of frames, called subnets. From the user's point of view, a frame consists of some

text and a menu of selections. The general format he sees is described in Section 2.

The internal description for a frame is shown in Figure 4. Each displayed item has

positioning information so that the frame builder has mayimum flexibility in defining his frame

iayout. The frarme title is specified with its position (vertical, v, and horizontal, h, position on

a 80 charicter by 21 line dicplay) and the !ext to be displayed. The frame text is specified in

the same way. The frame action is a character stream that will be fed to the communications

multiplexor when the frame is entered. The option list contains a list of selections whose

description will be given below. The local pad list contains a list of selections in the same

form. The global pad frame number is the number of a frame whose options are displayed

and accessed as global pads (common to a large part of the network). The accessor list is a

list of frame numbers which reference this frame. The frame identification is the text string

which appears in the upper right corner when the frame is displayed. It is constructed by

concatenating the subnet name and relative frame number within the subnet. The

maintenance information includes the subnot number, relative frame number, version number,

name of owner, date of creation, name of last modifier, date and time of last modification, and

an-indication of whether the frame may be modified or viewed by users other than the owner.

Finally, a comment may be stored with the frame. This comment is not displayed when the

frame is displayed.

The description of a selection, either an option or a pad, is shown in Figure 5. It has

position information and the text to display. The displayed text is expected to indicate to the

user how to make the sclection (e.g., by containing the selector character as the first

character of text). The selection may have a next frame, which will be displayed when the

selection is made. The next frame is represented as an absolute frame number to allow

access to the next frame in a single disk access. The selection may have an action: a

character stream that is fed to the communications multiptexor when the selection is made. A

18 G. Robertson, D. McCracken and A. NowellI

-Frame titles Y (line number), h (character position), text

-Frame texts v, h, text

-Frame actions text (not displayed)

-Option lists list of selections

-Local pad list: list of selections

-Global pad fr'ame number

-Accessor list: list of frame numbers (not displayed)

-Frame Id: text

-Mlainstenance Inftormat ion (not displayed)

-Comment: text (not displayed)

Figure 4: Internal Frame Description

touch rectanptc is included for touch screen orocessino. The rectanete is soecified by the

coordinates of the uooer left corner and the coordinates of the lower right corner. Finallv, a

selector character is soietified. The selection orocessor uses the selector character (or the

J1 touch rectangle, if inout is coming from the touch screen) when it tries to evaluate a user

selection.

-Selection text: v, h, text

-Next frames absolute frame number (not displayed)

-Selection actions text (not displayed)

I -Selectors character (not displayed)

-Touch rectangles X1, Y1, X2, Y2

Figure 5: Internal Selection Description

The ZOG Approach 19

Aciions are represented as simple text streams. A selection may have an action, and a

.frame may have an action on entry. The text for the action is sent to each logical output

device linked to the action input device. Actions may invoke the communications language

through appropriate escape characters. Thus, actions may use any ZOG supported facility

through the communications language, and may execute arbitrary programs by interacting with

the subjob. For example, a set of frames teaching ALGOL could have actions which actually

run examples for the user. Because of the open-endedness of actions, they are a powerful

means of prcgramrning frarnos.

A set of frames may be organized into a logical network called a subnet. Each subnet has a

print name and an internal index (an int~gor). The number of subnets allowed is an

impler-montation dcpendent parameter, but it is expected to be large (hundreds). The number

of frames allowed in a subnet is also expected to be large, but small subnets are not

penalized. Under normal circumstances, a user will enter a subnet through its root node

(relative frame one). The root node will usually have a frame action which will set the

necessary context for the subnet (e.g., start up an appropriate program on the subjob). Also,

the root node frame action will normally mark the frame (described later) so that it can be

returned to easily.

3.1.2. External Frame Format

An initial design objective was to maintain an external frame format that satisfied a number

of desired properties. The format should be readable, allowing someone without a ZOG

system to see what is in the frame library. The format should be easily supported by all ZOG

systems (different versions and different machires), so that the frame library would be

transportable. Finally, the format should be compatible with some existing facility to make its

external maintenance and manipulation easy.

Figure 6 is a sample of the BH format defining the frame shown in Figure 1. It is

moderately readable, is easily supported, and is compatible with the OH bibliography system.

Although we have reached our objectives with this external frame format, it does fall short of

providing total frame library transportability. Frames are transportable if their actions make

20 G. Robertson, D. McCracken and A. Newell

no use of the subjob. However, if an action evokes some program on the subjob, then that

program must be transported as well as the frame. Since those programs are completely

arbitrary, we have no control over their transportability.

+R. ZOG3 3
+G+ GPads I
+T+ T "GLnoral backg.round on ZOG"
*P. T 1 10
*T+ F "ZOG is part of a re.march effort to understand communication betueen humans

PA and computer%. Various asp,-cts of this research effort are described below."
' +P+ F 3 1

+T+ 01 "1. System specifications of ZOG"
+P+ 01 6 3
+F+ 01 Z0G4
T 02 "Ilhat is ZOG used for -- functional characterization"
+P 02 8 3

- +F+ 02 ZOGS
*T+ 03 "3. Scientific issues behind ZOG"
+P+ 03 10 3
+F+ 03 ZOGS
+T+ 04 "4. Who is doing ZOG? IJhero? When? What sponsors?"
+P+ 04 12 3
+F+ 04 ZOG7

- + *T+ 05 "5. Prior research and antecedents"
+P+ 05 14 3

- +F+ ZOG8
rT+ 06 "6. Examples of ZOG projects (real and In progress)"

S +P+ 06 16 3+F 06 ZOG9
+T* 07 "7. Oeveloping your own ZOG net"
+P+ 07 18 3
+F+ 07 ZOIO
T LP "P-PRINT"
X* LP ""EF."

Figure 6: Example of BH Format

3.1.3. Selection Processing

Now that we have examined the internal and external structure of frames and subnets, let

us take a closer look at the primary mecihanism that the user deals with, the selection

processor (see Figure 7). Lot us start with a displayed frame. The user makes his selection

by touching the screen or typing the selector character. In the case of the screen touch,

some immediate feedback is given so that the user knows his touch was successful (a

cross-hatch is placed on the screen where the touch was detected, and a star is placed over

the firs,' character of the selection if the touch fell within the bounds of one of the selection

touch rectangles). Then the coordinates are translated into a selector character which is

The ZOG Approach ?.

treated as though it were typed. The selection processor then scons options, local pads, and

finally global pads trying to match the seiector character. If no match is found, it rings a bell.

If a match is found, the selection is evaluated.

1. Get selector character.

2. find sel-ection. 11 none, ring bell and back to 1.

3. Interpret selection action, If any.

4. Set next fr.me, if any.

S. Oispt:y frae, it changed.

6. Interprot frath action, If any and it frame changed.

7. Back to 1.

Figure 7: Selection Processor Cycle

To evaluate a selection, the selection processor first checks if the selection has an action.

If it does,, then th." character stream from the action is sent to each logical out;ut device

linked to the action input device. The selection processor handles escape characters to the

communications language as well. After the action has been interpreted, the selection

processor checks if the selection has specified a next frame. If so, it saves the current frame

on the frame backup list and sets the specified next frame as current. Finally, the selection

processor checks if the current frame is different from the last frame. If it is different, it is

d'splayed and checked for any frame action. If the frame has an entry action, it is

interpreted.

3.1.4. Communications Language

The communications language allows the user and the frame builder to maintain control over

the interactions between the user and the various parts of the ZOG system. It can be invoked

with escape characters from the keyboard, input file, subjob, or actions. It provides four

basic facilities: (1) network positioning (escape character ^A (control-A)); (2) communications

22 G. Robertson, D. M.cCracken and A. Newell

control (escape character -0); (3) frame modification (escape character "D); and (4) hard-copy

output (escape character ^E). This language is very simple: it has no variables, no

conditionals, and no repeats. It is invoked by one of the four escape c',aracters mentioned.

The character following the escape character is a command. Some commands take operands

by examining the character stream following the command.

The network positioning commands (-A) provide support for moving through the network in

ways other than simple selection. Whenever a new frame is selected, the previous frame is

saved on a backup list. The positioning commands allow the user to back up to the previous

fraine, miark a frame in the backup list, return to the last marked frame, and clear the backup

list. A composite command backs up to the previous frame and takes the next option. An

orienting command lets the user examine his backup stack, the list of frames he has marked,

and the list of frames that point to the frame he is currently viewing. A find command allows

the user to specify a search for an arbitrary string, with control over which parts of the

frame to search and which frames to search, by restricting the search to frames created or

modified by a particular person, or modified since a particular date and time. There are

commands to control several defaults in the system: default initial frame, default global pads

frame, default selection character for undefined selections, default time and selection

character for dir.play timeout (for controlling how long the user is allowed to view a frame).

Finally, there are commands to re-display the current frame, go to an-arbitrary frame, and

control the statistics gathering package.

The communications control commands (^B) provide support for maintaining and modifying

the routing control information for the logical input devices. These commands also support

opening and closing the input and output files, manipu!ating the subjob, exiting from a ZOG

system, and manipulating the display in a terminal independent way.

The frame modification commands (CD) provide a basis for an editing system. There are

commands for sending individual frames, subnets, or the whole network. These may be used

to save frames externally (e.g., if the ZOGNet printing input is routed to the output file) or to

send the frames to a more elaborate editor running- on the subjob. Frames may be

constructed by routing the appropriate input device (usually the input file or subjob) to the

Tho ZG'. Aw-roach 23

ZOGN-at builder output device. There ire co rooan rds for sethip, protection of frames (to allow

a user to make a frame modifiable only by its creator, or viewable only by its creator). There

are commands to do) pte a frame or a subnet. One command moves a frame from one part of

the network to another. One command renames a subnet. Finally, one command enters ZED,

the interactive edit mode for a frame.

The hartd-copy output commindz: (^E) provide a means of getting hard-copy of frames in

various formrals. There are commands for getting a picture form of a frame (hard-copy sazne

as displayed v'ersion), an index ol' frari-es in a subnet, and an index of all subnets.

3.1.5. Statistics Gathering

Since a principal concern with ZOG is understanding how users interact with such systems,

ZOG is instrumented for gathering various kinds of data about its use. There are three kinds

of statistics that ZCG deals witht static, dynamnic, and iog. The static statistics mechanism

analyses ZOGNets. Figure 8 Ghows such an analysis for a typical subnet.

StAtus: III frames

368 opt ionn., 3.3 pi,- frame
per frame: 22 16 181012 10 4 47 >9.94

121 pads, I.1 per frame
per frame: 79364 100008 >9: 0

Actions: 0 frame, 13 option, 2 pad
Next frames: 95 option, 116 pad

ChAracters: 4S7313 TOTAL, 412.0 FIER FRAMlE
3814 title, 34.4 per fraine
16699 text. 150.4 per framq
22916 option, 206.5 per frne, 62.3 pt-r option
2125 padi, 19.1 ppr fraem, 17.6 per pad
182 actioti, 1.6 por frame, 12.1 per action

Global pad frammis CParlsl

Figure 8: Static Statistics for a Typical Subnet

Dynamic statistics are gathered while a user is interacting with the system. They record

and summarize all user actions. Figure 9 shows an example of the dynamic statistics for a

typical user session. These statistics are gathered and stored in a central statistics file when

24 G. Robert';on, D. McCracken znd A. Newoll

the user exits from ZOG. The ue'- may a..o rcquest such a summary for his own perusal

while in ZOG. There irn cternl statistics pocka es that take the central statistics file and

provide summary and search capabilities for it.

ZOG (7.6.2): 1F21 using lG. NETX32tZG00) on 5/8/79 from 1802 to 1841.
1200 baud. 39 jobs.

84 frames accorsrd, J423 socs. 16.9 soc,'fraine, SO - 20.83
5-sec Intervals: 4 27 26 9 5 5 1 0 3 2 0 0
I m in Intervls: al I I 0 a > 5 min: 0

r; 14 frames edited, 960 secs. 68.5 sec/frtame, SO = 86.54
I min inte ,..als: 8 5 0 0 a 1 0 0 0 0 > 10 sin: 0

98 frames total, 2333 secs, 24.3 sec/frame

BIt f I les: 0 new frames, 0 r,'pl.ac-d framres, 0 errors, 0 fra?',es output
ZED: 1043 t -t ch:.-r, le, cov.77ind chars, I errors
Total: I frames created, 0 frr'n3 deleted

* Seluction=: 41 nptinn, 20 local pads, 30 global pads, 2 errors
Rctions: 6 framo, 34 selection
Command.: 0 nexts, 15 bacs, 2 returns, 3 gotos

0 finds, 9 others, I errors
Chars: 1433 from keyboard, 0 from subjob, 0 to subjob

1 Subnots acessed: -OG: I lnq: 7 Help: 3 Brostat: 24
" Status: 21 Istue: 12 People: 9 fleeting: I Admin: 2 Update: 4

Figure 9: Dynamic Statistics for a Typical User Session

Log statistics are gathered only if a user specifically asks for them. They are much more

detailed ihan the dynamic statistics shown above. The log file is a history of specific user

input (keystrokes) and system response, with a time stamp (in milliseconds) for each action.

Such a mechanism is essential for the study of user interaction with a ZOG-like system.

3.1.6. Frame Editing -- ZED

The frame editor, called ZED (for ZOG Editor), has two major parts: (1) a set of frames that

allow the user to delete frames, move frames from one subnet to another, and create new

subnets; and (2) an edit mode for altering a single frame.

The set of frames simply provides a convenient interface between the user and the

communications language frame modification commands. Although the frames are not strictly

part of the basic ZOG system, it is useful to think of ZED (frames and edit mode) as a single

system.

,,,=- .,,z..-_,

V

The ZOC Apprnach 25

There are two ways to enter the edit mode. The first is by selecting a selection that has

no next frame. The user is allowed to create (define) a frame at that point. If the user

decides to create that frame, he is prompted for a frame to copy (with a default for each

subnet). The new frame is then displayed, and the edit mode is entered to allow the user to

fill in whatever parts of the frame he desires. Once a frame is constructed, the user may

select one of that frame's options which may point to a new undefined frame. By

system.'ticaliy stepping through the options and creating new frames at each step, the ZOG5et

can be created in a top-down fashion.

The otlher way of enlc-ring the edit node is throug, the edit g:obai pad which appears on

each framro. The design for edit mode was derived from exlcnding the alter mode of SOS (a

line oriented text editor found on many PDPI0 systems, developed by Weihor and Savitzky

(1970)) from one dimensional line editing to two dimensional frame editing. The frame being

edited is always displayed. Edit mode commands are typed (but not echoed), and the results

of an'editing operation appear as changes to the displayed frame. Thus, visual fidelity is

continuous!y maintained to the frame as modified. A description of these editing tools may be

found in McCracken and Robertson (1979).

3.1.7. Conventions

We have adopted a number of conventions that make the system easier to use for both the

user and the frame builder. They deal with the frame display organization, selection format,

and commonly used pads. The system does not enforce these conventions in any way.

The organization of the displayed frame has only two system-enforced decisions. First, the

frame identification is always displayed in the upper right corner. Second, the context display

is always just to the left of the frame identification. The context display shows the number of

marked frames (if any). The layout of the title, text, options, and pads is completely up to the

frame builder.

Our current display format is shown in Figure 10. It assumes a display with 24 lines of 80

characters. The title is restricted to 56 characters on the first line. A blank line separates

the title and text; the text is one to nineteen lines long with 80 characters per line. The

26 G. Robertson, D. McCracken and A. Nowell

number of options is limited to nine so that digits may be used for selectors. Options share

space with the text; that is, the less text, the more options. Each option is preceded by a

blank line for better readability and ease of, touch selection. The options may be up to 56

characters long. Space on the right is reserved for local pads, which may be 13 characters

long. The mvost common pads (rlobai pads) are on the bottom line. Options are selected by

digits, local pads by upper case alphabetics, and global pads by lower case alphabetics. Any

selection which is inert (has no action or next frame) is prefixed with a minus sign to indicate

that it is not worth iselccting. Finally, if a frane needs more than nine options, it is broken

into several frames with the ninth option of each pointing to a frame with the continuation of

the list.

(TITLE56I (t1arkiD.111I) Fam.Io.11I

(TEXT.. I
ITax t -lIInes + 2*Numbor-o f-op t i ons + Work space- Iinos a 191

I(..I

1. (OPTION-TITLE I... A-EPAO-TITLE.131

2. [OPTION-TITLE 5. 6..I 8-EPAO-TITLE.13)

3.-EOPTION-TITLE56) C-tPAO-TITLE.131

. ..OPTI....N ..T .TL...................................- TL.......

S. [OPTION-TITLE 5.. S...I 1-IPA0-TITLE.13I

(USER DISPLAY ... I
edit help back next mar-k return zag displayj user comment 'goto find inf

Figure 10: Conventions for Display Layout

Another unenforced set of conventions has to do with the global pads. In Figure 10, a set

of global pads is listed on the bottom line. The edtpad enters the edit mode of the frame

editor, ZED. The heft) pad enters a subnet which describes how to use ZOG. The bac pad

returns to the previous frame. The mnx pad backs up to the previous frame and

automatically selects the next option which has a next frame. The mark pad marks the current

frame. The number of marked frames will appear in the context display (if there are any).

The ZOG Apprcach 27

The rettrn pad enters a subsystem that allows the user to examine his backup stack, list of

.marked frames, and list of frames which point to the current frame. From the return

subsystem, the user may go dircctly to any frame on any of those lists. The zop pad goes to

the root node of the whole system without disturbing context (i.e., the user may get back).

The display pad re-displays the current frame. This is useful if the display has been

disturbed by some external cause (e.g., a terminal failure or a message from another user).

The uer ped displays the user display (a full screen display whose bottom ;ine is normally

displayed in line 23 of the frame display). The comment pad provides a means for the user to

send a coitment to the syttm dicsiners. The Soto pad allows the user to go to any frame in

the network. The find pad enters the find subsystem, which allows the uner te search the

network for an arbitrary string, for frames modified by a particular person, or for frames

modified since a particular date and time. The info pad prints the maintenance information for

the current frame, including the version number, the name of the creator/owner, date of

creation, name of last modifier, and date and time of last modification. Exit from the system is

done by -C, which will log ot't the subjob if it wa. logged in, close the user's to. file if it was

opened, ciose any opened files, and record statistics about this user session in a central

statistics file before exiting the system.

3.2. Current Implementation

There are three current implementations of ZOG; one for the DEC PDPIO, one for the DEC

VAX-I 1/780, and one for C.mmp, an experimental multiprocessor computer system. The three

systems are basically compatible, although each has some specialized features and limitations

not found in the othrrs. In this section, we will briefly characterize the current state of each

of these systems.

3.2.1. ZOG on the POP10

The current implementation of ZOG on the PUPIO is written in L*(M), which is an interactive

system-building system described in Newell, McCracken, nd Robertson (1977). L* has made

implementation and experimentation with ZOG easy and. straightforward. The current

28 G. Robertson, D. McCracken and A. No,,ell

implementation follows the design described above except that it does not support rapid

response. There are versions for TOPS-IO, TOPS-20, and TE.,EX operating systems. This has

been the basic system and has been operational in one form or another for over two years.

The current implementation supports 12 types of display terminals. It also supports a

mode which may be used on any other kind of terminal (including a teletype), but with the

display format only approximated. Support for other display terminals may be easily added,

assuming the terminal in question has cursor addressing, screen clear, and backspace

functions, and has at least 24 lines of 80 characters. Response rates depend on the data rate

to the terminal and the system load. Most work, done on ZOG to date has been with 1200

baud terminals on a moderately loaded PDPIO (KLIO with 40 to 50 users). Response rates

under those conditions are typically around 5 seconds per frame, which is barely tolerable for

ZOG work. The current implementation stores the frame network in a single disk file, and has

a capacity of 225,000 frames (450 frames per subnet, with 500 subnets). We have recently

interfaced one led/photocell touch screen (Carroll Manufacturing (1979)) to a standard video

terminal with promising rcsults.

3.2.2. ZOG on VAX-11/780

The current implementation of ZOG on VAX is written in L*VAX, a dialect of L*. It has just

become operational, and is currently directly compatible with the PDPIO version. VAX ZOG

runs under the UNIX operating system.

3.2.3. ZOG on C.mmp

The current implementation of ZOG on C.mmp is written in L*C.(D), a dialect of L*. This

version does support rapid response on a touch screen graphics terminal, but does not

support ZED (the frame editor) or subjob intcractions. The C.mmp version has been primarily

used as a vehicle for experimenting with effects of rapid response on user behavior.

C.mmp is a multi-mini-processor that was developed at CMU and is described in Wulf and

Bell (1972). It has up to sixteen PDPII's connected through a crosspoint switch to a large

shared memory. The operating system for C.mmp is called Hydra and is described in Wulf,

. . .,.. .

The ZOG Apprcach 29

Pierson, Pollack, Levin, Corwin, Jones, and Cohen (1974). C.mp/Hydra was chosen as the

environment for the rapid response version of ZOG because the experimental nature of Hydra

made it possible for us to modify the lowest levels of Hydra to help achieve our response

goals.

The key to rapid response is the nature of the terminal being used. Conventional terminals

are limited to relatively low bandwidths between processor ond terminal. To get the kind of

response we desired, it was necessary to use terminals trat permit transfer rates of 50

kilobaud or higher. Our choice for this terminal was a graphics system developed at CMLI,

called the GDP (Graphics Display Processor) and described in Rosen (1974). The GDP is a

vector drawing graphics system which can change the entire screen in less than 16

milliseconds. To allow full utilization of this speed, the GDP was interfaced directly to one of

the POPI I's on C.mrnp, with software support for it built into Hydra.

A ZOG terminal is a combination of a C.mmp GDP, a touch screen, and a high speed disk

used as a frame cache. The touch screen is a clear plate of glass placed over the face of the

GOP. When touched by a finger, it produces a pair of coordinates with a 0.1 inch accuracy

(using a surface acoust;c wave). The disk being used as a frame cache is an IMS disk (341

frame caparity), with a special feature that allows zero latency access to pages (4,096 16-bit

words). The frame network itself is stored on an RP06 disk, with a capacity of 50,000 frames.

Rapid response is achieved by augmenting the interrupt service for the touch screen (part

of Hydra, written in BLISSl1) to handle most of selection processing. When a touch is made,

an immediate response is given by overprinting the first character of the selection. This

gives the user immediate feedback to confirm that his touch worked. The interrupt driven

selection processor then finds the selection and evalu.Ates it. If a selection action or frame

action is encountered during evaluation, then the basic ZOG system is used at non-interrupt

level (with actions being interpreted just as in the PDPIO version). However, for a selection

with no action, the next frame is found (in primary memory, in the cache, or in secondary

memory) and displayed at interrupt level. This design avoids most of the overheads normally

imposed by an operating system. The current implementation supports a response rate of 0.1

second for selections without actions (generally about 707. of all selections).

IIII ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . .i l ..lll .I .l l : ' -

30 G. Robertson, D. McCracken and A. Newoll

The design and implementation of ZOG, plus the basic philosophy and goals, have now been

described. Let us now look at some of our experience to date.

4. Initial Expcrience with ZOG

ZOG has been operational for about three years in the CMU computer science environment.

During most of this time it has undergone development and enhancement, as befits any novel

computing system. The locil environment and system goals are sufficiently different from the

single-tesk, highly structured medical environment of PROMIS to require such evolution. The

initial stages of development were more a hill-climbing effort on obvious deficiencies and

opportunities than a place for detailed, controlled psychological study. However, we provide

some preliminary assessments and observations from this early phase below.

4.1. Computing Communities

Interactive computing systems require computing communities within which to grow and

prosper. Such a view is widely held, for example, in connection with the growth of the

software environment in the PDPIO-ARPANET community. "ZOG appears to be no exception.

Until recently, there were two ZOG systems: the C.mmp version with rapid response, touch

screen, but a single terminal; the PDPIO version with a slow (1200 baud) response, no touch

screen, but available at all hours on all terminals in the environment. The community (POPIO)

system became the main pacing system -- where the enhancements occurred and where

almost all experience accumulated. That the C.mmp version was a substantially less

comfortable software environment no doubt contributed to its infrequent use, but we believe

it was availability that forced most use to be on the POPIO system.

Though slow (see below), the community version attracted people interested in the new

applications, permitted exploring applications that involved several users, and permitted the

accumulation of experience by casual users.

The ZOG, Approach 31

4.2. Speed of Interaction

The initial view that rapidity of response is an essential feature of ZOG is clearly confirmed

by the experience to (late. The 5 second per frame response of the POPIO version produces

a qualitatively different interface than does the rapid (0.1 second) response, and intermediate

speeds (4800 baud wilh about 2 second response) are also markedly different. In some

applicatiens (see below) the speed of response appears to have been critical in keeping the

application from tran.forming into a routine ucefu; facility.

In general use, the residence time at a frame is of the order of 10 to 20 seconds and

appears to be remarkably constant over nets and users. With such times, highly rapid

response (0.1 second) appears to offer no advantaGes over, say, 0.5 second system response.

Longer delays may still be significant psychologically, since the user is waiting during the

delay, whereas he is not waiting during the residence period. The purpose of the very fast

response (0.1 necond) is to make ZOG acceptable to expert users when traversing highly

familiar paths. In various simple familiar tasks (such as searching a net repeatedly), the user

response times on the rapid system never gets much below I second. Under these conditions

the very fast response (compared to 0.5 second) does not seem critical. However, various

system issues, such as the parallax of the touch screen, become limiting factors.

The effect of response speed is seen clearly in another feature of the POPIO system. ZOG

is an active network, intended to worK, in conjunction with other programs that proivide

substantial amounts of intelligent support. A key design decision in ZOG is implementing this

not via an internal propramming system but rather through the subjob communication link.

This keeps ZOG simple and widens the range of pro.rams which can be coupled with ZOQ.

However, the subjob facility in the TOPSIO operating system of the POPIO is substantially

slower than the regular interaction rate (1200 baud). In consequence, few applications have

developed which depend on subjob support.

The result is that the PDPIO ZOG system is still located in the wrong place in the space of

performance parameters to determine its usefulness and potential: The recent move to a VAX

version of ZOG is an attempt to move to a better place in this parameter space.

32 G. Robertson, 0. McCracken and A. Newell

4.3. Large Nets

We have verified what we knew: that it is extremely difficult to grow large ZOG networks.

About 50 nets have been built by the total community and the total number of frames

produced is about 10,000. The rate of frame production by hand, using ZED and top-down

frame creation, is about 5 frames per hour. Like the typical residence time, this also seems to

be remarkably constant over nets and over net builders. (Our data in both cases comes from

the automatic galhering of stitistics on all ZOG scs.slons throughout the community.) Typically,

manual nets range from 100 to 300 frames; it takes dedication and project organization to get

above 500. The reAlly big nets, which account for the bulk of the 10,000, all have some

structured or automatic growth features.

Thus, we have not yet produced the really large nets that seem an essential ingredient of

ZOG. In part, this stems from the lack of machines aids for growing nets, and in part from the

interaction of the current response speed with the computing community, which keeps ZOG as

an interesting system for exploration but not effective enough to become self-sustaining in

major applications which would drive up the size of the nets.

4.4. Applications

PROMIS offers good evidence that a large network, rapid response menu selection system

Is effective in the medical domain. However, PROMIS represents a highly engineered,

dedicated application. Our purpose is to explore an open range of applications. Immersion of

ZOG in a computing community has been our strategy for obtaining diverse applications.

We list here a number of the applications areas that have been explored, either by the ZOG

group itself or others in the community. We then discuss several that yield interesting

observations.

-Guidance systems: (1) Information about people, projects, systems, education,

and other facets of life in the department for incoming students in the

Carnegie-Mellon University Computer Science Department. (2) A transparent

guide to the use of other programming systems (or-even other computer systems

if the right kind of local communications network exists). (3) An Academic

The ZOG Approach 33

Advising Sy.tcm, used by the undergraduate student ac v:,ror to help answer

students' questions about courses and majors, with iniormation about course

offerings and degree programs. (4) A front-end to Pople's (1977) Internist

medical diagnosis system.

-Databases: Databases are the most natural application for ZOG-like systems. We

have a number of database applications, including the experimental results in

Cognitive Psychology, artificial intelligence systems, and a personal

re~ational-databas.:,. in oddition, we have a major project implementing a library

browsing syAem (described in Fox and Palay (1979)).

-Project kin.,Yenfnt: Inform;t.on about project goals, personnel, subtasks,

reportine rCquiren~cnt, issues, and status. It is a highly dynamic network shared

and updated by all project personnel.

-Issue Anly,'-Js: A policy analysis tool for handling large complex issues. The

points and counlorpoints of an issue are presented in a hierarchical and

contrasting format called an issue net. The net is dynamic, and users carry on a

debate using this shared medium. Two issue nets are described in Mantei and

McCracken (1979).

-Interactive Docutmntat;on: Severai complex systems have been documented with

ZOG frame libraries, including two operating systems. Tools have been developed

that aid the frame builder by translating machine-readable documents (in one of

three document generation formals) into an initial set of frames. The initial set is

inferior to hand-built frames, but provides a good starting point.

-Instruction: A traditional computer-aided instruction system that provides

instruction in opening bridge bids. It provides alternate pathways through the

instruction network ha.ed on student pcrformance, by using a subjob to maintain

state information.

The library browsing system, implemented by Fox and Palay (1979) and called BROWSE, is

of special interest because of its size and the techniques used for growing it. The BROWSE

net is currently 4000 frames and continues to. grow. The net is grown by maintaining an

external database of library entries (books, journals, articles) and a categorization of them.

.I,,,, . .. i i n I i , . P -] li
I

| l i l ni . . . | n * = i h . .

34 G. Robertson, D. McCracken and A. Nev. 311

An entry system is used by the librarians to augment and modify that external database, and

a translation system converts it into a ZOGNet. The user of BROWSE then uses ZOG to browse

through the library collection.

The project management ZOGNets are of special interest because of their dynamic nature.

Such networks exist for several projects in the department, including the ZOG project itself.

The ZOG project management net is about 550 frames, and is jointly maintained by everyone

in the projec; (about 10 people). However, the relatively slow response rate (5 seconds) on

the PDPIO has inhibited general use of ZOG management nets in our department. Except for

the response problem, mnnagement nets have proven to be a valuable aid for modest sized

projects.

The Internist front-end is of special interest because of its effective use of the subjob

mechanisms. Earlier versions of Internist, described by Pople (1977), required the physician

to enter symptoms using exact terminology, which was an undesirable memory load for the

physician. The ZOG front-end allows the physician to select symptoms from a hierarchical set

of menus. Internist is written in INTERLISP, and runs on a POPIO under the TOPS-20

operating system. The ZOG front-end interacts with Internist through the ZOG subjob

mechanism, and is the best example of the use of ZOG as an active communications agent.

4.5. Major Psychological Issues

In some broad sense, all problems with a (debugged) interface must be psychological.

Certain aspects of performance with ZOG seem to raise issues that are strongly psychological

and call for intensive psychological investigation.

Users readily iet lost in using ZOG. The user does not know where he is, how to get

where he wants to go, or what to do; he feels lost and may take excessively long to respond.

This happens in all sorts of nets, especially complex nets or nets without regular structure. It

does not happen in all, especially if the user does not have expectations about the net. The

phenomena of getting lost is not unique to ZOG. There are many informal reports of similar

problems in other interactive systems. It is probably the most important phenomenon to

understand in psychological terms. Our first substantial psychological investigation on this

The ZOG Approach

problem is being undertaken by Marilyn Mantei.

Users fail to read information on frames. Even though frames have only modest amounts of

text and the users are looking for the information that is there in exactly the right form, they

often fail to pick it up. Possibly the problem is in maintaining a state of acute attention to

frame after frame. This phenomenon does not appear to be unique to ZOG (see Robertson

(1977)).

The linitod nhort term memory of the user is everywhere evident in ZOG. This is because

the current display surface of 24x,0 chatictcrs holds so little data that moving to a nev

frame becomes an act of total replacerrent. Some part of the phcnomena of getting ;ost surely

arises from this feature of ZOG. Like the question of speed, there may be a requirement that

displays be large enough to hold not only the current frame, but a fair amount of knowledge

accumulated from many frames plus various maps and overviews of where one is.

5. The Potcntial of ZOG

The most important question is whether ZOG has the potential to be a new communication

interface, especially since menu selection techniques are common practice. The answer lies in

rapid response into a large, network (Eupportud by the other principles), which produces a

man-computer interface with qualitatively different properties, best summed up by the slogan

of "transparency with speed".

The basic advantage of menu selection is that the user does not have to bring to the

situation knowledge of either the functional possibilities for interaction or how to

communicate. Either of these can be a strong barrier to communication. Menu selection

instructs while operating. It is superior to a hard-copy manual in two ways. First, it

eliminates the jump from barely acquired knowledge to how to put it into action. With a

manual Ihe user must still decide exactly what to do after reading the textual material; in

menu selection he simply does it. Second, it eliminates the search for the relevant information

by locating the relevant knowledge at the site of action. Manuals are not the only

alternatives (e.g., there are instruction sheets, scripts and on-line help facilities); our purpose

is only to makc clear the essential dimensions of menu selection.

36 G. Robertson, D. McCracken and A. Nowell

Menu selection has two disadvantages as normally implemented. First, it is slow. Expressed

as channel capacity, in nmcnu selection the user can select about 1 out of 10 alternatives

every 5 seconds (i.e., about I bit per second). In typing, by contrast, the rate is about 1

word per second for a reasonable typist (i.e., about 10 bits per second). These figures are

exceedingly rough; however, they illustrate that one can got messages into a computer about

an order of magnitude faster by typing than by menu selection. The second disadvantage is

the forced interposition of explanatory text and options. Menu selection becomes especially

trying for skilled operators who no longer need the instruction that it offers. A manual can

be put away after it is learned. This disadvantage compounds the tpeed disadvantage, since,

even though the text can be ignored, there are usually extra options to wade through.

However, the negative reactions probably are generated by more than just slowness, but also

by a sense of needless bother and frustration about being forced to operate inefficiently.

I. These disadvantages do not prevent menu selection from being a useful technique. They

do conspire to limit its use to applications where the user is a novice so that he needs

explanation and could not communicate rapidly in any event. The relevant domain is broader

than might be thought, ranging from~ rare situations where everyone is a novice, to systems

used repetitively by experts who do not wish to acquire technical jargon.

Rapid response and the use of large networks are designed to remove both of these

disadvantages. A response time of 0.5 seconds, as opposed to 5 seconds, gives back the

missing factor of 10 in speed. Whether communication speed can be then competitive with

typing is not determined simply by such raw figures, of course. But now, at least, the issue is

a matter of details and not a foregone conclusion. Permitting avoidance of unneeded

explanatory steps is basically a question of designing alternative sequences, so there are

"short circuits" for experts and "long circuits" for novices.

Grant for the moment the major technical premise, that these two disadvantages can be

effectively nullified. Then rapid selection, large network menu selection systems become a

distinct type of man-machine interface. They maintain their properties of ease of use and

transparency, but also permit both expert and novice operation, and in whatever the user's

mixture of experience and familiarity with different aspects of the system. They become a

The ZOG Approach C7

general purpose interface.

The evidence for the claim of a distinct type of interface comes both from the ZOG

experience discussed above and the experience with PROMIS. This claim for ZOG is a minimal

one. We will al.o lay out a much stronger claim, which might be taken as a maximal claim. In

doing so, our intent is to describe the potentialilies of ZOG. Though convinced of the

potential of ZOG and desirous of exploiting it, we are strongly motivated by the desire to

understand the interface scieniificall/, to discover its limits as well as its strencths. T;he

maximal ctaim is that thf. ZOG type of interlace is a preler-ed mode of man-machine

interactioc', even over the us"e of natural language diaog witi 1he computer in the role of

intelligent agent. To understand this claim, we must' step back a little.

There are two polar views about how to structure man-machine interaction. One is the

computer as tool. Under this view one wishes to make the computer a better tool -- more

responsive, easier to wield, more reliable in app!ication, capable of doing a bigger job at a

stroke. Control remains with the user. The other view is the computer as intelligent assistant.

In this view one wishes to make the computer more intelligent, and communication with it

more natural. One does not wicld an intelligent assistant, one tells it what one wants.

Intelligent agents figure out what is necessary and do it themselves, without bothering you

about it. They tell you the results and explain to you what you need to know.

There is a tension between these two views, for in an important sense intelligence is

obscure. More precisely, intelligence in oneself is illuminating and transparent, but in others

it is obscure and impenetrable. This follows from the tautaloical principle that to understand

another's ict of inlelligence requires an act of intelligence. And precisely what an intelligent

assistant is supposed to provide is freedom (of the user) from the effort of understanding.

Put one other way, delegation requires an act of faith.

This trade-off-like opposition between computer as tool and computer as intelligent agent

is a fairly deep affair, certainly capable of sustaining more analysis than we can devote to it

here. We wish to use it only to make clear a claim about a ZOG-like interface. We make no
assertions whether the tension is unresolvable or whet'her the computer might not permit

combining these two views in many as yet unforeseen ways.

aserioswhthi o w r te c

38 G. Robertson, D. McCracken and A. Noweli

ZOG is an evolution in the tool direction. It seeks to produce a transparent device which, in

itself, has no intelligence at all, but is immensely responsive to the user. It seeks to do this in

the arena where we normally expect to use natural language, namely, dealing with large

bodies of knowledge. Indeed ZOG uses natural language for its output. However, its own

internal structure, which governs what it says and when it choses to say it, is completely

open to examination by the user. In fact, examination takes place as a simple side effect of

requesting the knowledge from the system.

The maximal claim then is that this mode of communication will be substantially superior t0

that of communication with an intelligent agent operating within the usual natural language

dialog. The control exercised by the user and the ability to acquire the relevant pieces at a

rate matching the users capabilities (no matter how fast) will more than offset the

communication capabilities provided by intelligence applied to real time dialog.

This claim does not assert the unimportance of intelligence. A good network results only

from intelligent analysis of the topic -- it is frozen intelligence. The claim refers to the

process of communication, to the efficiency of knowledge acquisition or complex process

control by a human user. Nor does this claim make an assertion about the scope of its

application. Dynamic situations surely exist in which time to construct a network must be

thrown in the balance against time to communicate by some more direct way from the

naturally occurring situation.

What grounds are there for thinking the interface might contain the seeds of such an

eventuality, rather than simply the minimal claim of being another (different and useful)

interface? The unique proriorty of ZOG-like interfaces is the rate of change of visual textual

(and pictorial) information under user control. We can think of no other situation where this

particular high degree of informational selectivity is evident. We can expect it to yield some

quite new communicative phienomena. Other dynamically controlled visual situations (as in

Sutherland's (1963) Sketchpad) operate at a lower interactive rate informationally (and are

unique in other ways). The computer, as its speed and memory increases, opens a continual

sequence of genuinely new interactive experiences. The rapid response large network

interface is simply one of these.

The ZOG ;\p,3rrth 39

6. Cost

We have discussed the functional potential of ZOG. It is also necessary to discuss the costs.

ZOG (and PROMIS) are expcnsivc systems in two ways: the cost of the hardware, and the cost

of preparing the networks. The appropriate form to discuss costs is in terms of system

demands for proccs.inG and memory, and manpower demands for networks. Reduction of

these to dot! r,. confounds the isnue with particular technology and minor design decisions.

The lefinical demind of rnpid respon.,a ran..s from 50 to 300 kilobaud peak. transmission,

dependinS on implementtion tkchniques. The unpredictability imnplied by the iarge network

essentially means this rate must be available from large storage devices, though of course it

can be shared for all terminals. Such a data rate is by no means out of the question, but it is

like current disk-core transmission rates and is very high for terminals. The technical demand

for the la'.e networks is about 25 megabytes of storage (700 characters per frame times

35,000 frames). Again, this is not out of the question, but is substantial. However it is mostly

shared among all terminals. Touch screen capability is itself not common on terminals and is

still mode-ateIy expensive. But here demand could no doubt bring the cost under control. In

summary, compared to currently popular interfaces the ZOG interface looks unattractive; only

substantial conviction of its useful properties and/or a strong change in technological costs

would lead to its exploitation.

The cost of developing the large network may be by far the largest barrier to the adoption

of this philoclophy. Under current art each frame must be hand crafted by a professional

skilled in the knowledge embedded in the frames. The extra skills to be a good frame and net

designer are not yet understood. PROMIS estimates a total of 100 man-years invested in

producing its library of 35,000 frames. As mentioned earlier, our experience with ZOG

indicates a production rate of about five frames per hour. This tremendous cost factor implies

that work done on machine aided (or semi-automatic) frame generation will become critical to

the adoption of this philosophy.

We are exploring three possible ways of reducing the cost of frame development with

machine aided frame generation. The first, mentioned in connection with the interactive

40 G. Robortson, 0. McCracken and A. Newell

documentation applications, is to convert existing machine-readable documents into an

unpolished initial set of frames. The second is the use an externally maintained database with

tools for automatic conversion to ZOG frames. This approach is being used by the library

browsing application (see Fox and Palay (1979)). The third approach is to use collections of

frames, called schemas, with parameterized display elements. The investigation of the schema

approach is being done by Kamesh Ramakrishna. All three approachs show promise, although

hone appears to be universally useful.

7. Next Steps

From the general description we have given, it should be clear that there remain a number of

unanswered questions about the parameters of ZOG-like interfaces. The main lines of further

study and development are as follows.

The ultimate appeal of ZOG-like schemes is in the quality of interaction they offer, so that

establishing the performance aspects and developing an appreciation for them will be the

priority issues. Our recent implementation of ZOG on the VAX is a move in this direction. The

VAX version appears to have significantly lower overheads on subjob interactions and faster

response rates, which should encourage exploration of action oriented applications.

Development of techniques for constructing large networks is essential. As mentioned in

the previous section, we are exploring three different approachs to machine aided frame

generation. Jn addition, we are studying alternative mechanisms for global editing of frame

libraries, which is further described in McCracken and Robertson (1979).

Studying how users interact with ZOG is essential, both in the classic human factors

investigations of parameters (such as response time and display layout) and in more cognitive

issues (such as search strategies, learning time and style of using ZOGNets). Our approach,

originally described in Newell (1977) (see also Card, Moran and Newell (1980)), is to construct

information processing models of user behavior. Some progress is already underway on this

(see Mantei (1979) and her work on disorientation). We are particularly interested in

developing new methodologies for using user study experiments to guide the development of

systems (work being carried out with Kamila Robertson).

The ZOG Approzch 41

It is clear to us that ZOG and PROMIS represent a novel and potentially important kind of

man-machine interface. Our experience with various applications supports that position. The

areas of effort described above represent the current focus in our study of man-machine

communications.

8. Acknovilcd~emcnts

This work was tsupported by the Office of N,.vii Research urndcr contract N00014-76-0374. It

was also partially Eupported by the 0' fen'.c Adviinced Rcs.--rch Projects Agency (DOD), ARPA

Order No. 3597, monitored by the Air Force Avionics Laboratory under contract

F336 15-78-C- 1551.

This papor represents work -done by a group of researchers including the authors and

Kamesh Ramakrishna, Marilyn Mantel, Mark Fox, Andrew Palay, Kamila Robertson, Craig

Somerville, Andrew Reine r, Rick Cattell, Robert AKscyn, Jeff Sonar, Lynne Reder, Lee Gregg,

Joyce Hannah, Casey Quayle, and Harry Poplo.

9. Refe~rences

Card, S., Moran, T. and Newell, A. (1980). Computer Text Editing: An Infor mat ion-processi ng

Analysis of a Routine Cognitive Skill. Cognitive Psychology, Vol. 12, No. 1, 1980.

Carroll Manufacturing (1979). Touch Technology.

ChomsPky, N. (1957). Syntactic Structures. The Hague: Mouton.

Ford, M. (1979). PRESTEL - The British Post Office Viewdata Service. Proceedings of the 1979

International Conference on Con-imunicat ions. IEEE, June 1979.

Fox, MA. and Palay, A. (1979). The BROWSE System: An Introduction. Proceedings of the Annual

Conference of the American Society of Information Science. Minneapolis. October 1979.

Mantel, M. (1979). Modeling User Behavior in Computer -Presented Learning Tasks. Presented

at the American Education Research Association Annual Meeting. San Francisco. April

1979.

42 G. Robertson, D. McCracken and A. Newell

Mantei, M. and McCracken, D. (1979). Issue Analysis with ZOG, a Highly Interactive

Man-Machine Interface. Proceedings of the First International Symposium on Policy

Analysis and Information Science. Duke University. June 1979.

Martin, J. (1973). Design of Man-Computer Dialogues Prentice-Hall.

McCracken, D. and Robertson, G. (1979). Editing Tools for ZOG, a Highly Interactive

Man-machine Interface. Proceedings of the 1979 International Conference on

Communications. IEEE, June 1979.

Newcomer, J. (1976). BH - A General Information Organization Program. Carnegie-Mellon

University Technical Report, May 1976.

Newell, A. (1977). Notes for a Model of Human Performance in ZOG. Carnegie-Mellon

University Technical Report, August 1977.

Newell, A., McCracken, D., and Robertson, G. (1977). L*: An Interactive, Symbolic

Implementation System. Carnegie-Mellon University Technical Report, October 1977.

Newell, A., H. Simon, R. Hayes, and L. Gregg (1972). Report on a Workshop in New Techniques

in Cognitive Research. Carnegie-Mellon University Technical Report, June 1972.

Newman, W. and Sproull, R. (1979). Pringciplej If interactive Computer Graphics. McGraw Hill.

Pople, H. (1977). The Formation of Composit Hypotheses in Diagnostic Problem Solving: An

Exercise in Synthetic Reasoning. Proceedings of the Fifth IJCAI. Cambridge, Mass.,

August 1977.

Rosen, B. (1974). Graphics Display Processor Programmer Guide. Carnegie-Mellon University

Technical Report, January 1974.

Robertson, C.K. (1977). The Division of Information Processing Labor between User and

Support System--Exploration of a Concept. Ph.D. thesis, University of Pittsburgh, 1977.

Robertson, G. (1973). Some Design Considerations for the ZOG' Man-Computer Interface.

Proceedings of the Third NATO Advanced Study Institute on Information Science. Chania,

Crete, Greece, August 1978.

Robertson, G., Newell, A. and Ramakrishna, K. (1977). ZOG: A Man-Machine Communication

Philosophy. Carnegie-Mellon University Technical Report, August 1977.

Schultz, J. and Davis, L. (1979). The Technology of PROMIS. Proceedings of the lEE.

Thu ZCC A;.prnach 43'

September 1979.

Sutherland, 1. (1963). SKETCHPAD: A man-machine graphical communication system. Proc.

AFIPS 1963 SJCC, Spartan.

Weiher, W., and S. Savitzky (1970). Son of Stopgap (SOS). Stanford Artificial Intelligence

Laboratory Operating Note.

Wulf, W., and C. Bell (1972). C.mrnp -- A Mul t i-Mini -Processor. Proc. AFIPS 1972 FJCC, Vol. 41,

AFIPS Press, Montvale, N.J., pp. 765-777.

Wulf, W., C. Pierson, F. Pollack, R. Levin, W. Corwin, A. Jones, and E. Cohen (1974). Hydra: The

Kernel of a Multiprocessor Oporatinr ytm CACM, Vol. 17, no. 6, June 0974, pp.

337-345.

44 G. Robarlson, D. McCrccken and A. Nevioll

Appendix 1: ZOG Communications LanCuage

Under normal circumstanccs, ZOG routes character streams from a number of sources of input

to a number of logical output devices. Most of these input sources may invoke the

communications language with one of six escape characters: -A (control-A), -B, -C, ^D, -E, or

^.. Two of these escape characters are direct commands: ^C forces an exit from the system,

and "L forces a clear of the user display. The remaining escape characters take the following

character as a command, which may interpret characters following it as parameters. These

escape characters provide support for the four basic facilities that ZOG provides: ZOGNET

positioning, communications control, ZOGNET modification, and hard-copy output. After the

command has been executed, the character stream continues to flow as determined by the

new state. The following is a complete summary of features of the communications language

(with the appropriate escape character shown before each command).

1.1. ZOGNET Positioning Commands

^A^A - Send -A as though no escape occurred.

^AD - Display current frame. This command is useful if the display area becomes cluttered

and the user wishes to redisplay the frame.

^AU - Show full user display. Normally, only the last line of the user display is shown (in line

23 of the frame display). This command allows the user to view the entire user display.

-AM - Mark current frame for later return.

^AR - Return to the last marked frame.

^A- - Return anywhere. This command enters a subsystem that allows examination of the

backup stack, the mark stack, and the list of frames pointing to the current frame. The

user may go to any item on any of these lists.

-AB - Back up one frame.

-AN - Next option. This command gocs to the previous frame and selects the option following

the one last selected. It is useful while exploring an unfamiliar network.

"AG<frameid>; - Go to frame.

AF - Find string. This command enters a subsystem that allows the user to specify and

control a search of all or part of the ZOGNet. The search specification includes a string,

the name of the last person who modified the frame, the date of last modification,

whether to search text only or the whole frame, and what subnets to search. A list of

frames matching the search specification is constructed, and the user is allowed to

examine that list and go to any frame on it.

^AC - Clear backup list. Each time the user makes a selection, the frame he was at is saved in

a backup list. This list is used by Backup, Mark, Next, and Return to preserve state. The

The ZCG Approach 45

Clear command empties this list, with the side effect of removing any "marks".

"AP1 - Pop backup stack once.
^AP<frameid>; - Unwind backup stack to first Occurrence of frame.

^Al<frameid>; - Set initial frame (used on entry to the system).

^A*<frameid>; - Set default global pad frame. If no global pad frame is referenced in a frame,

the default is us.ed.

^AHH - Hold statistics and tog.

^AHR - Resume statistics and log. The hold and resume commands are used if detailed user

data is being recorded and some interruption forces the user to !eFve the terminal for

awhile.

-A. - Ro,'et zitatitics counters.

-A? - Pr nt dynamic statistics.

^AS<chv "> - Set selection character for undefined selections. Normally, the system simply

ring- a bcll if the user types an undefined selection. With this command, any undefined

selections will be translated into the specified character.

^AT<time>; - Set maximum display time in 100 millisecond units.

^AX<char> - Sot display timeout selection character. The timeout time and timeout selection

character commands enable an experimenter to control Sow long a user sees a display

and what happens when the user does not respond within a given time period.

1.2. Communications Control Commands

"B^B - Semd ^B as though no escape occurred.

^BXE or "BXS - Set oulptit level, E for expert, S for standard.

"B; - Comment to next carriage-return.

^BP<input> - Push input route. The current list of outputs to which the specified input are

routed is saved. <input> is a single character: F for file, K for keyboard, T for

touch-screen, A for action, Z for ZOGNET printing, M for ZOG messages, J for subjob, and

E for echo from sub job.

^BU<input> - Pop input route. Restores the list of outputs for the specified input, assuming

that a 01P<input> was previously done for that input. Otherwise, it does nothing.

"BR<input><outputl>...<outputn>; - Route input to outputs. This command establishes a list of
outputs for a specified input. <outputm> is a single character: S for selection processing,

Z for ZOGNET building, J for subjob, F for file, L for log file, U for user display, 0 for

frame display, and C for context display (for number of "marked" frames).

;8 .- Print routing information. This command will print a map of where each input is

currently routed. It also prints information about opened files and the state of the

sub job.

46 G. Robertson, D. McCracken and A. Newell

^BI<filenam.ext>; - Open input file. Once opened, an input file will be read to its end, with

each character being sent to each output devices specified in the file input route. -BI;

will cause a prompt to be printed and the file name to be obtained from the keyboard.

^BO<filenam.ext>; - Open output file. Any output directed to the output file before it is

opened will be ignored. ^BO; will cause a prompt to be printed and the file name to be

obtained from the keyboard. If the file already exists, the user will be given a chance to

abort the open.

^BC - Close output file.

^BL<filennm.ext>; - Open loo file. In addition to opening the lop file, this command starts the

logging operation. Evcry kcystroke and every frame display is logged with a time stamp.

"BM - Place subjob in monitor mode. This is equivalent to sending a series of tC's to the

subjob.

^BE - Exit from ZOG. If a subjob has been logged in, this will logout the subjob. If an output

file has been opened, this will close it. ^C is trapped by ZOG and will cause a ^BE unless

the keyboard is routed to the subjob, in which case it will be passed on to the subjob.

^BDhv; - Position display cursor. This command takes a vertical line number, v, from I to 25,

and a horizontal character position, h, from I to 80, and moves the cursor to that

location. When ZOG is started, it asks the user what kind of terminal he is using. This

allows actions and subjobs to be terminal independent.

^BT<char> - Set terminal type.

^B. - Clear display.

"BN - No clear on next frame display. This command is used to overlay frame displays to get

special effects.

^BS<selection-char><char> - Print <char> immediately before selection specified by

<selection-char>.

^BK<input><char> - Wait for character <char> from input source <input>. This command will

suspend input from the current source until the condition is satisfied.

^BW<statc> - Wait for state, where <state> is F for end of input file, J for subjob in monitor

mode, and K for carriage-return from keyboard. This command will suspend input from

the current source until the condition is satisfied.

1.3. ZOGNET Modification Commands

D"D - Send ^D as though no escape occurred.
"DF<frameid>; - Send frame in OH form. This command sends the external form of the

specified frame to outputs linked to the ZOGNET printing input.

"DC<frameid>; - Send frame comment in BH form.

"DS<subnetid>; - Send subnet. This command sends the 8H form of all frames in the specified

Tho ZOG Approach 47

s ubne I.
-DW - Send whole ZOGNET. This command .cndG all frames in SH form.

-*- Send all frames modified during the current user session.
-DN<subnotid>; - Send next free frarncid for subnet.
^D?<framcid>; - Send maintenance information for frame. The maintenance information

includes the creation date, name of creatlor, date and time of last modification, and name
of last modifier.

D. - Send current frame identification.
^DU - Send current u-cr identification.
^DV - Si nj current 7013 vc-rsion nurobcr.
^DT - Setid current lop time ill rillisecands).

-DY<franmeird>; - Dit.play frame. Tis cor'm-arid displays tho -.pccified frame in the same way
the relection proce,:oor tli-sp~ays f rames.

^D0<franmeid>; - Overliy ditsplay of frame.

^DD<framoid>; - Delete frame.
-DM~framcid> <subnctlid>; - Movc frame to another subnet.
^DR - Renamo a -,ubno&. This command prompt,. for subnet to rename and new name to give

it.
^Dlcframeid>; - Initialize frarnn. This command will prompt for the namne of a frame to copy,

then enter ZED.
-DE<framcoid>; - Edit frame (enter ZED).

-D- Resume edit. This command reenters ZED editing the frame it was last editing. ZED has
several ways of suspending state and olving the user freedom to move about the
ZOGNet, anid this command restores that slte.

^-- Set indicator marks. This command scans the entire net and checks all selections to
determine if they are inert or net. Inert selections are given a minus sign after the
option number to indicate to the user that they Go nowhere.

^DPframe-id>; - Set protection for frame. This command prompts for the type of protection
required. Two types are currently supported: (1) only owner can write frame, and (2)
only owner can view frame.

^DA - Set default protection for all new frames.

1.4. Hard Copy Output Commands

^E^E - Send ^E as though no escape occurred.
'^EFcframeid>; - Send picture form of frame. Picture foryn is a hard copy image of what the

user sees on his video display.

^ES~subnetid>'; - Send picture form of all frames in subnet.

48 G. Robortson, D). McCracken anid A. NowotI

-E Send picture form of all frames modified dluring this user session.

^EI<subnetidJ>; - Send inidex for subnet. This command will list all frames that are defined in
the specified subnet.

^EX - Send index of all subnets. This commands will list the names of all subnets.

'^EA,<subnotid>; - Send static analysis of subnet.
^?- Send static analysis of all subnets.

Tho -- G Approach 49

Appendix 1I: ZED - The Frarme Editor

The frame editor, called ZED, v.,as based on an extension of the one dimensional SOS alter

mode (Weiher and Savitzky, 1970) to a two dimensional frame alter mode. The frame is

always displayed while it is cditcd. The user types single character commands (listed below),

which are not echoed. The effect of the commands is to alter the frame as displayed. All

alterations are made to a copy of the frame, so that the user may abort the edit with no

changes made.

When alter mode is entered, a chck is made to ensure that the frame is already defined. !f

it is not, alter mode aborts with an error message. It it is, a ccpy is made of it, and the ccpy

is displayed. Tho cursor is soat to th first c'.aracter of the text, which becomes the current

item beina editcd.

Most of the following comiand may be preceded by a number (represented by italicized

n), which indicates a repetition of the operation. In general, upper case commands are fcr

manipulating items (title, text, options, local pads, global pads), and lower case commands are

for manipulating teyt (within the current item).

General commands:

h or H or ? - Print ,.Itcr mode help.
q or Q - Quit alter mode; no change to frame.
e or E - Exit alter mode with altered frame.

Item commands:

n<space> - Skip n characters in current item.
n<dcl> - Back up n characters in current item.
I - Back to start of current ilcm.
ns<char> - Search for n'th occurrence of <char> in current item.
i<char>3 - Insert characters in current item to altmode.
nd - Delete n characters in current item.
-U - Restore current item.
nk<char> - Kill (delete) to n'th occurrence of <char> in current item.
nm<char><chars>S - Munch (kill and insert).
t - Transpose next two characters in item.
nir<chars>8 - Replace n character- (same as ndi<chars>S).
nc<n-chars> - Chance next n characters in item.
a'., - Invert ca-.e of next n characters In iterri.
p - Alter position of current item.
n - Alter next frame of current item.
a Alter action of current item.
b - Alter box (touch rectangle) for current item.
x<chars>$ - Extend item (insert at end).
z - Alter selection character of item.

50 G. Robertson, 0. McCracken and A. N~owell

Frame commands:

,,<line-ferd - Skip n frame items.
n<altmode> - Backup up n frame items.
L - Back up to title (first frame itern).
S<char> - Search for selection with <char> as selector.
I- Insert item; prompts for arguments.

D - Delete item.
- Replace whole frame; prompts for frame to copy.

#- Exit to net with edit resumec enabled.
A - Alter frame action.
B - Display boxes (touch rectangles).
C - Alter frame comment.
F - Formal option positions.
G - Replacp global frame pad.
J -Justify text.
M -Add mark command to frame action.
R - Replace item.
X - Extend options.

The ZOG .Approach 5-

Appendix III: External Fram3m Format - 6H Files

The external frame format was chosen to provide a mean, of transporting and exporting

ZOG frames and nets to other ZOG systems. It was chosen to be compatible wiih a

bibliography maintenance program, called 1-H (Newcomer, 1976), to allow use of the Corting

features of 814 if desirtd. A BH file contains a series of entries with each entry containing a

number of elements. The first elemernt must be a +A+ element. The other elements are all

labelled with +-:char>+. The following BH-comPatible format is used for ZOG frames.

+A+ frarmvyd v - Entry header. Defire frame with version nut, cr v. if v is less than or eq Jal

to an exi-tjing version number, then bypai:;s t-is old versiln. If v is zero, then au.-_ent

ti' existing frame rather thi' replacing it.

+G+ fratrieid - Global pid frame.

+C+ "comn'-,nnt" - Comment. If a frame is bein defined, the commert is included as part of the

frame, although it is not nornatly displayed. Otherwise, the comment is ignored.

+F+ <desc> frameid - Next frame. This specifies the next frame for either an option or a pad.

<desc> is described below.
+P+ <desc> v h - Pos~lion. This spec.ies !he cursor starting position (vertical and horizontal)

fpr an option or pad.

+T+ <desc> "text" - Text. This specites the text which is displayed as part of an option or

pad. It should include the selector character and some indication of whether making the

selection would result in any action or next frame (i.e., if not, the selector character

should be preceded by a "-").

+X+ <desc> "action" - Action. This specifies the character string which will be used as action

inpul when the option or pad is selected.

+F+, +P+, +T+, and +X+ are used to characterize a selection (option or pad). Any of them

may be omitted. <dcsc> specifies which option or pad is being characterized as follows: T is

for frame title and if valid only for +P+ and +T+; F is for frare'text for +P+ or A-T+, frame

action for +X+, and illegal for anything else; O<char> is for an option with a specified selection

character; and L<char> is for a local pad.

Text appearing between double quotes may he multiple lires long. Several cnaracters must

be quoted within text strings (plus, ampersand, double-quote, and control-Q). The quote

character is control-Q.

SECURITY CLASSIfICATIO.4 Or 1TWI$ 04':- '14714 Data Etofaidl

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSI FFORE COM.PLE'T-NG FORM

I. REPORT NUMi6R 12. GOVI ACCESSION NOj 3. RECIPItENTS CATA6j0G.NUMLAL

CHU-CS-79-148

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOO COVERCO,

THE ZOG APPROACH TO MAN-MACHIlE COK4UNICATION Interim

6. PERFORMING ORG. REPORT NUMmepR

2. AuTwOR(eJ S. CONTRACT OR GRANT NUM9ER(S)

G. Robertson, D. McCracken and A. Newell N00014-76-C-0874

S. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEEWNT. POJE:T. TASK

AREA & WORK UNIT kUMiERS

Carnegie-Mellon University

lr,,=tus ft~cifrice g3
1,. CONTROLLING OFFICE NAME ANO ADORESS I. REPORT CATE

Office of Naval Research October 1979

Arlington, VA. 22217 13. NUM9E%%F PAGES

14. MONITORING AGENCY NAME 4 AOORESS(IU duifereg from Contellng Clte) IS. SECURITY CLASL (of this reponj

UNCLASSIFIED

1 46 09 LASSIFICATIONI OOWNGRAOING
SGNEDuLE

1i CSTRISUTION STATEMENT (et thl Repet)

Approved for public release; distribution unlimited

17. DISTRI9UTION STATCMENT (at th. abstract angrediIn o lac k0. II differenl Avo Repele)

! S. SUPPLEIME NTARY NOTE[S

19. KEY WOROS (Cautioue on rere @#aei ne....ea and £dontliV b, Ij4 4011641s

MS. ABSTRACT (C4i91 on reverse side iI 0eeee417 d 140014ll' OF 61104k 00ee416

DO 1 J*f :73 1473 rotot or INOV 4SiS OSSOL.Te UNCSSIFIED
SIR QN 010944 I ECuRIY CLASSIFICATION Of THIS PAGE (when Doe groddeosAe

